Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Ab initio analysis of hydrogen solution, segregation and embrittlement at cleavage plains and at a grain boundary in ferritic steel

Abril Azócar Guzmán, Ruhr-Universität Bochum, Bochum, Germany

Jeongwook Jeon, Ruhr-Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Rebecca Janisch, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 24.09.2020
  • Time: 17:00
  • Place: Materials Science and Engineering Congress 2020 online conference, TU Darmstadt, Germany

Abstract

High-carbon steel alloys are currently the preferred material for hydrogen transport through pipelines. However, the different steel grades show a certain permeability for hydrogen, and are thus prone to embrittlement. Grain boundaries in ferritic microstructures play a dual role in the context of hydrogen embrittlement: on the one hand, they act as H traps and thus reduce the amount of mobile H in the system. On the other hand, exactly this trapping is expected to promote hydrogen enhanced decohesion at the grain boundaries. In order to influence the segregation process as well as the cohesive properties of interfaces in ferrite, one needs to understand in detail the relationship between strain, carbon and hydrogen solubility, and cohesive strength. We present the results of ab-initio studies of H segregation in Fe single crystal {001} and {111} cleavage planes, as well as at a Σ5 symmetrical tilt grain boundary. We determine the solution energy as a function of tractions normal to the interface for different loading and relaxation schemes. While the chosen method clearly affects the quantitative results, the qualitative findings are the same: In relaxed as well as strained microstructures, H tends to accumulate at the grain boundary. While it reduces the surface energies, and hence the work of separation, there is no significant impact of H on the transgranular or intergranular fracture stress.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N