Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Phase-field coupled strain gradient crystal plasticity model to study high temperature creep in Ni-based superalloys

Muhammad Ali, Ruhr-Universität Bochum, Bochum, Germany

Oleg Shchyglo, Ruhr-Universität Bochum, Bochum, Germany

Ingo Steinbach, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 15.06.2021
  • Time: 02:30 p.m.
  • Place: 15th International Conference on Creep and Fracture of Engineering Materials and Structures, online event

Abstract

Creep resistance of superalloys at high temperature is one of the most important parameters defining the range of applicability of superalloys. A combination of thermodynamics and material diffusion with elasto-plasticity within the framework of phase-field allows us a depth and systematic analysis of creep behavior of superalloys. In order to investigate the creep properties of single crystal Ni-based superalloys during the evolution of microstructure, a dislocation-based strain gradient crystal plasticity model [1] is implemented. The model is calibrated against the experimental results of a creep test at a high temperature and low stress. Then, it is used to predict the kinetics of the microstructure up to 1% creep strain, in which diffusion is assumed to be controlled by the slowest diffusing element Rhenium Re [2]. It is demonstrated that the loss of coherency between the matrix and the precipitate is crucial for the coalescence of the γ precipitate and initiation of rafting [3,4,5] and rotation of the γ matrix. It is further observed that highly localized shear bands were formed under high stresses and a tendency of rafting direction toward 45 degrees [6]. Finally, sensitivity of microstructural topology and evolution kinetics towards creep properties of superalloys was analyzed [4,5]. The effect of pre-strained matrix on the evolution of γ precipitates is highlighted.

[1] P. Engels, A. Ma, Alexander Hartmaier, Continuum simulation of the evolution of dislocation densities during nanoindentation, International Journal of Plasticity journal, 38 (2012) 159–169.
[2] B. Ruttert, O. Horst, I. Lopez-Galilea, D. Langenka, A. Kostka, C. Somsen, J.V. Goerler, M.A. Ali, O. Shchyglo, I. Steinbach, G. Eggeler, and W. Theisen, Rejuvenation of Single-Crystal Ni-Base Superalloy Turbine Blades: Unlimited Service Life? Metallurgical and Materials Transactions A, 49A (2018), pp. 1-12.
[3] J. V. Goerler, I. Lopez-Galilea, L. Mujica Roncery, O. Shchyglo, W. Theisen, I. Steinbach, Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation, Acta Materialia, 124 (2017) pp. 151-158.
[4] C. Wang, M. A. Ali, S. Gao, J.V. Goerler, I. Steinbach, Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys, Acta Materialia 175 (2019) 21-34.
[5] M. A. Ali, I. Lopez-Galilea, W. Amin, S. Gao et al. Effect of γ′ precipitate size on hardness and creep properties of Ni-base single crystal superalloys: experiment and simulation, Materialia, 12, 100692, (2020).
[6] M. A. Ali, W. Amin, O. Shchyglo, I. Steinbach. 45-degree rafting in Ni-based superalloys: a combined phase-field and strain gradient crystal plasticity study, International Journal of Plasticity, 128, 102659, (2020).

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N