Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Data-oriented description of microstructure-dependent plastic material behavior

Jan Schmidt, Ruhr Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 23.05.2023
  • Time: 16:45
  • Place: 7th World Congress on Integrated Computational Materials Engineering (ICME 2023), Orlando, USA

Abstract

Constitutive modelling of anisotropic plastic material behavior traditionally follows a deductive scheme, relying on empirical observations that are cast into analytic equations, the so-called phenomenological yield functions. Recently, data-driven constitutive modeling has emerged as an alternative to phenomenological models as it offers a more general way to describe the material behavior with no or fewer assumptions. In data-driven constitutive modeling, methods of statistical learning are applied to infer the yield function directly from a data set generated by experiments or numerical simulations. We present a new generic descriptor for crystallographic texture that allows an explicit consideration of the microstructure in data-driven constitutive modeling. We prove its ability to capture the structure-property relationship between a variety of textures and their anisotropic plastic behavior described with the yield function Yld2004-18p by applying methods of supervised machine learning. In the context of data-driven constitutive modeling, the descriptor enables consideration of microstructure evolution.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N