Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

ICAMS-IFM

A novel approach to parametrize a ferroelectric phase-field model from atomistic simulation data

Frank Wendler, Friedrich-Alexander-Universität, Erlangen, Germany

Time & Place
  • Date: 20.06.2024
  • Time: 12 p.m.
  • Place: ZGH 03-121, RUB, Germany

Abstract

Phase-field simulations based on the Landau-Ginzburg-Devonshire theory extend the time and length scales in comparison to molecular dynamics (MD) simulations. The interpretation and adaption of the continuum model parameters is not trivial, but crucial for a correct up-scaling of MD results from ideal and defective ferroelectric single crystals. MD simulations using a core-shell potential for polarization switching in ferroelectric barium titanate (BTO) with and without vacancy defects are carried out. Crucial material properties such as elastic and piezoelectric tensor components, kinetic coefficients, as well as domain wall characteristics are extracted from the MD data to adjust the anisotropic gradient energy. To generate a complete energy landscape, a proposed parametrization workflow involves determining all coefficients for the 6th order Landau polynomial from polarization reversal characteristics. Polarization switching in BTO involves localized nucleation and subsequent domain growth, driven by an applied electric field. MD simulation data proves the role of thermal activation in domain nucleation, resulting in a notable scatter in coercive fields within small systems. From statistic analysis of this data we calculate the activation parameters for BTO that govern polarization switching at coercive fields not only for perfect, but also those containing vacancy defects, and the domain wall energies. An approach comparable to the nudged elastic band method is applied in the phase-field simulations to probe the barriers by transitions over the critical nucleus. The method is important for phase-field simulations of domain nucleation and domain wall motion in presence of point defects carrying mono- or dipolar electric fields as well as elastic strain fields, and for the motion and interactions of multiple domain walls.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N