Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

2D-dislocation dynamics study of plasticity in ultra fine grained metals

Naveed Ahmed, Ruhr-Universität Bochum, Bochum,

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 01.09.2008
  • Time:
  • Place: Materials Science and Engineering 2008, Nürnberg, Germany

Abstract

Two-dimensional Dislocation Dynamics (DD) simulations are employed to study the different mechanisms of plastic deformation of ultra fine grained (ufg) metals at different temperatures. Besides conventional plastic deformation by dislocation glide within grains, we also consider grain boundary mediated plasticity by incorporating grain boundary sliding and grain boundary diffusion into the DD model. This is achieved by splitting up dislocations encountering a grain boundary into a glide and a climb part. The first one is moving conservatively along the grain boundary and thus causing grain boundary sliding; the latter moves under production or annihilation of vacancies. The motion of the climb part thus requires calculating the local concentration of vacancies within the grain boundary network. This is accomplished by solving the diffusion equation and coupling it to the dislocation motion via source and sink terms. The local vacancy concentration in turn exerts an osmotic force on the climb dislocations. The “material” is modeled as an elastic continuum that contains a defect microstructure consisting of a preexisting dislocation population, dislocation sources, and grain boundaries. The mechanical response of such a material is tested by uniaxially loading it up to a certain stress and allowing it to relax until the strain rate falls below a given threshold. The maximum plastic strain obtained for a certain stress yields the quasi-static stress-strain curve of the material. The quality of results is investigated by comparing with experimental results known from the literature.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N