Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Adaptive kinetic Monte Carlo simulations of vacancy/interstitial diffusion in α-Fe

Jutta Rogal, Ruhr-Universität Bochum, Bochum, Germany

Ralf Drautz, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 12.09.2010
  • Time:
  • Place: Ψk (Psi-k) Conference 2010, Berlin, Germany

Abstract

The contribution of vacancies to the hydrogen-induced degradation of materials properties (hydrogen embrittlement [1]) is of both scientific interest and technological relevance, especially for Fe-based alloys such as steels. The strong interaction of hydrogen interstitials with other point defects might be one of the key issues in explaining the observed effects.

In our study we employ an adaptive kinetic Monte Carlo [2] approach to investigate the diffusion of hydrogen in the presence of vacancies in bcc-iron. To ensure a reliable description of the underlying potential energy surface we use density functional theory to determine energies and forces.

Within the adaptive kinetic Monte Carlo method possible diffusion mechanisms do not have to be assumed a priori, but are discovered during the simulation by the system itself. This flexibility in identifying mechanisms is of importance since hydrogen interstitials are trapped by vacancies and the formed hydrogen-vacancy clusters might exhibit a diffusion behaviour that differs significantly from that of a single vacancy. Within our simulations the diffusion of hydrogen interstitials, vacancies and hydrogen-vacancy clusters is treated simultaneously and various mechanisms are discussed.

[1] J. P. Hirth, Metall. Trans. A 11A, 861 (1980).

[2] G. Henkelman and H. Jonsson, J. Chem. Phys. 115, 9657 (2001).

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N