Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Deformation pattern of a Ni-base single-crystalline superalloy in Vickers indentation: crystal plasticity simulation versus experiment

Bernhard Eidel, Ruhr-Universität Bochum, Bochum,

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 18.08.2009
  • Time:
  • Place: International Conference on the Strength of Materials, Dresden, Germany

Abstract

Abstract Pyramidal indentation into the (001) surface of an fcc single crystal made of a Ni-base superalloy exhibits indent shapes which strongly depend on the azimuthal orientation of the indenter. This contribution experimentally elucidates this observation by 3d digital surface models obtained from high resolution electron back-scatter diffraction (EBSD) technique along with digital image processing. Simulation results of a crystal plasticity finite element analysis are in very good agreement with the experimental observations; the results suggest that the driving mechanism for the observed pile-up formation in indentation is purely crystallographic slip geometry, whereas the influence of stress concentrations due to (i) different indenter orientations, due to (ii) different indenter shapes and even due to (iii) the anisotropy in the elasticity law is negligible.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N