Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Deformation of ultra-fine-grained and nanocrystalline metals: role of dislocation-grain boundary interaction

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Rebecca Janisch, Ruhr-Universität Bochum, Bochum, Germany

Naveed Ahmed, Ruhr-Universität Bochum, Bochum,

Xiaohui Zeng, Ruhr-Universität Bochum, Bochum,

Time & Place
  • Date: 30.11.2009
  • Time:
  • Place: Fall Meeting of the Materials Research Society (MRS), Boston (MA), USA

Abstract

The mechanical strength of grain boundaries determines the deformation behavior of ultra-fine-grained and nanocrystalline metals. Sliding of grain boundaries has been suggested contribute significantly to the plastic deformation, on top of conventional dislocation plasticity. Furthermore, grain boundaries and triple lines are potential sites of crack initiation and crack advance. A multiscale model is presented in which the mechanical properties of grain boundaries under shear and tension are calculated by electronic structure methods within the density functional theory. From the resulting tensile force-displacement curves physical parameters like the work of separation, maximum stress and displacement across the interface are derived. For the case of shearing and grain boundary sliding generalized gamma-surfaces are calculated that can be used to classify the different types of grain boundaries into three categories. The ab initio results can be used to parameterize cohesive zone models that describe the mechanical behavior of interfaces directly on the continuum scale. Preliminary results obtained with a simplified model indicate that grain boundary sliding itself is not a significant deformation mechanism during plastic deformation of nanocrystalline and ulta-fine grained metals, but rather facilitates recovery processes close to grain boundaries and thus weakens the material.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N