Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

workshop

Beyond Slater-Koster: environmental tight-binding of nickel and cobalt

Eunan McEniry, Ruhr-Universität Bochum, Bochum, Germany

Georg Madsen, Ruhr-Universität Bochum, Bochum, Germany

Ralf Drautz, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 30.04.2012
  • Time:
  • Place: Ab initio Description of Iron and Steel: Thermodynamics and Kinetics. International scientific seminar at Ringberg Castle, Tegernsee, Germany

Abstract

In order to reliably model the effects of both alloying and light elements within steels, it is essential to properly take into account the chemistry of the bonding between atoms, as well as the effects of charge transfer and magnetism. Density-functional theory provides such a reliable framework, but its computational expense places limitations on its applicability to large-scale and/or multi-component systems. The tight-binding approximation, including charge transfer and magnetism, can be derived directly from the Kohn-Sham energy functional. Since the electronic structure is obtained from a parametrised tight-binding Hamiltonian, the methodology offers an enormous computational advantage over ab-initio methods.

While many tight-binding models have obtained their parameters from density-functional calculations, they generally involve uncontrolled approximations for the matrix elements of the Slater-Koster Hamiltonian, which limits their transferability. The present work begins with the Harris-Foulkes energy functional, from which the parameters of the tight-binding model are obtained in a rigorous and umambiguous manner. We obtain transferable parametrisations of the environmental contribution to the tight-binding Hamiltonian and assess the validity of the approach by application to nickel-cobalt alloys.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N