Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Ab-initio investigation of the mechanical properties of grain boundaries in aluminum

Naveed Ahmed, Ruhr-Universität Bochum, Bochum,

Rebecca Janisch, Ruhr-Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 10.09.2009
  • Time:
  • Place: Euromat 2009, Glasgow, UK

Abstract

For ultra-fine grained and nanocrystalline metals grain boundary sliding is considered to contribute significantly to the plastic deformation and hence to the exceptional properties of these materials, i.e. high strength combined with large ductility. Grain boundary sliding is determined by details of the atomistic structures and the strength of the inter-atomic bonds across the grain boundary. Density functional theory (DFT) calculations are performed to quantify generalized-stacking fault energy (γ) surfaces of bulk aluminum ((111) plane) and of different grain boundaries (Σ3 symmetric tilt, Σ3 and Σ11 symmetric twist grain boundary). This allows us to describe the atomistic structures as well as possible paths of grain boundary sliding. The climb-nudged elastic band method is used to calculate the transition paths for grain boundary sliding and to quantify the threshold stresses to initiate this process. Knowing the threshold stress for grain boundary sliding and the work of separation for grin boundary fracture enables us to model dislocation-grain boundary interaction as well as the competition between grain boundary sliding and fracture.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N