Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions

C.-W. Cho, J. Ranke, J. Arning, J. Thöming, U. Preiss, C. Jungnickel, M. Diedenhofen, I. Krossing, S. Stolte

SAR and QSAR in Environmental Research, 24, 863-882, (2013)

DOI: 10.1080/1062936X.2013.821092

Download: BibTEX

In this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e. excess molar refraction (E), dipolarity/polarizability (S), hydrogen-bonding acidity (A), hydrogen-bonding basicity (B) and McGowan volume (V)) were calculated using sub-descriptors (sig2, sig3, HBD3, HBA4, MR, and volume) derived from COSMO–RS, COSMO and OBPROP. With the combination of two solute descriptors (B, V) of the cation we were able to predict cationic hydrophobicity values (log ko ) with r 2 = 0.987 and standard error (SE) = 0.139 log units. By using the calculated log k o values, we were able to deduce a linear toxicity prediction model. In the second prediction study for the cytotoxicity of ILs, analysis of descriptor sensitivity helped us to determine that the McGowan volume (V) terms of the cation was the most important predictor of cytotoxicity and to simplify prediction models for cytotoxicity of ILs towards the IPC-81 (r 2 of 0.778, SE of 0.450 log units), Vibrio fischeri (r 2 of 0.762, SE of 0.529 log units) and Scenedesmus vacuolatus (r 2 of 0.776, SE of 0.825 log units). The robustness and predictivity of the two models for IPC-81 and Vibrio fischeri<(i> were checked by comparing the calculated SE and r 2 (coefficient of determination) values of the test set.

back
{"type":"article", "name":"c.-w.cho20138", "author":"C.-W. Cho and J. Ranke and J. Arning and J. Thöming and U. Preiss and C. Jungnickel and M. Diedenhofen and I. Krossing and S. Stolte", "title":"In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions", "journal":"SAR and QSAR in Environmental Research", "volume":"24", "OPTnumber":"10", "OPTmonth":"8", "year":"2013", "OPTpages":"863-882", "OPTnote":"", "OPTkey":"toxicity prediction; ionic liquids; density functional theory; linear free energy relationship; COSMO–RS; quantitative structure–activity relationship", "DOI":"10.1080/1062936X.2013.821092"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N