Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Crack propagation behaviours at Cu/SiC interface by molecular dynamics simulation

Y. Zhou, Z. Yang, T. Wang, Q. Liu, Z. Lu

Computational Materials Science, 82, 17-25, (2014)

DOI: 10.1016/j.commatsci.2013.09.029

Download: BibTEX

The propagation of the interfacial cracks at Cu/SiC interface under tensile (mode I) loadings and combination of tensile and shear (mixed mode) loadings are studied by molecular dynamics (MD) simulations. For the mode I, the asymmetrical interfacial crack propagation is observed at the interface, and the stress concentration is found both at the crack tip and somewhere of interface due to the lattice mismatch. Six loading methods with different loading angles are considered in this work, the behaviors of the crack propagation are found to be dependent on the loading angles. In addition, the Rice and Thomson (R–T) model is also used to predict the behaviors of interfacial crack growth theoretically. With pure tensile loading, the energies necessary for dislocation nucleation at the two crack tips are found to be different, which leads to asymmetrical crack propagation. For the mixed modes, the behaviors of the crack propagation are predicted by comparing the dislocation nucleation energy and the decohesion energy. The predictions of the R–T model are consistent with the MD results qualitatively. This research is intended to provide a fundamental explanation of the asymmetrical crack propagation at interface from atomscale.

back
{"type":"article", "name":"y.zhou20142", "author":"Y. Zhou and Z. Yang and T. Wang and Q. Liu and Z. Lu", "title":"Crack propagation behaviours at Cu/SiC interface by molecular dynamics simulation", "journal":"Computational Materials Science", "volume":"82", "OPTnumber":"", "OPTmonth":"2", "year":"2014", "OPTpages":"17-25", "OPTnote":"", "OPTkey":"", "DOI":"10.1016/j.commatsci.2013.09.029"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N