Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys

H. Zheng, J. Pfetzing-Micklich, J. Frenzel, G. Eggeler

International Journal of Materials Research, 100, 594-602, (2009)

DOI: 10.3139/146.110074

Download: BibTEX

In the present paper we use nanoindentation to investigate two shape memory alloys, austenitic Ti50Ni48Fe2 and martensitic Ti50Ni40Cu10 which both show two step martensitic transformations on cooling from the high temperature regime. No such two step features were observed during nanoindentation. Load controlled nanoindentation experiments were performed using a Berkovich indenter using maximum loads ranging from 0.5 to 85 mN resulting in maximum indentation depths between 30 and 1350 nm. For small maximum indentation loads below 5 mN, longer indentation times result in larger indentation depths (austenitic Ti50Ni48Fe2). At loads of about 1 mN the indentation curves show an abrupt change in slope which we suggest to be related to an interaction of the deformation and failure of a thin oxide layer and the formation of stress induced martensite (austenitic Ti50Ni48Fe2) or the de-twinning of martensite (martensitic Ti50Ni40Cu10). Nanohardnesses and shape recovery ratios strongly increase with decreasing indentation depths below 400 nm. For larger indentation depths, constant values are observed (austenitic Ti50Ni48Fe2: nanohardness 2.45 GPa/recovery ratio 0.25, martensitic Ti50Ni40Cu10: nanohardness 1.6 GPa/recovery ratio 0.4).

back
{"type":"article", "name":"h.zheng20094", "author":"H. Zheng and J. Pfetzing-Micklich and J. Frenzel and G. Eggeler", "title":"Nanoindentation of Ti$_50$Ni$_48$Fe$_2$ and Ti$_50$Ni$_40$Cu$_10$ shape memory alloys", "journal":"International Journal of Materials Research", "volume":"100", "OPTnumber":"4", "OPTmonth":"4", "year":"2009", "OPTpages":"594-602", "OPTnote":"", "OPTkey":"", "DOI":"10.3139/146.110074"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N