Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Massively parallel multiphase field simulations

M. Tegeler, A. Monas, G. Sutmann

Proceedings of the 4th International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, (2015)

DOI: 10.4203/ccp.107.5

Download: BibTEX

The phase field method is an established technique for investigation of microstructure evolution during materials processing. Large scale three-dimensional simulations including multiple phase fields and multiple components have high requirements for memory and computational power. In this paper we present a distributed-memory parallelization of the phase field library OpenPhase. We consider load imbalances that arise during phase field calculations and propose techniques to balance the computational load efficiently among the processors. We show benchmarks using thousands of processes and use the parallelized OpenPhase for a three-dimensional simulation, that was previously only viable in two dimensions.

back
{"type":"inproceedings", "name":"m.tegeler20153", "author":"M. Tegeler and A. Monas and G. Sutmann", "title":"Massively parallel multiphase field simulations", "journal":"Proceedings of the 4th International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering", "volume":"", "OPTnumber":"", "OPTmonth":"3", "year":"2015", "OPTpages":"", "OPTnote":"", "OPTkey":"material science; phase-field; Mg-Al solidification; parallelization; load balancing", "DOI":"10.4203/ccp.107.5"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N