Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Atomistic investigation of wear mechanisms of a copper bi-crystal

J. Zhang, C. Begau, L. Geng, A. Hartmaier

Wear, 332-333, 941-948, (2015)

DOI: 10.1016/j.wear.2015.02.023

Download: BibTEX

In the present work, we investigate the wear mechanisms of a Cu bi-crystal containing a random high angle grain boundary by means of molecular dynamics simulations. The underlying deformation behavior of the material is analyzed and further related to the observed characteristics of mechanical response and resulting morphology of the worn surface. In particular, the grain boundary-associated mechanisms are characterized by advanced analysis techniques for lattice defects. Our simulation results indicate that in addition to dislocation slip and dislocation-grain boundary interactions, grain boundary migration plays an important role in the plastic deformation of Cu bi-crystal. It is found that the wear behavior of Cu depends on the crystallographic orientation of the worn surface and can be altered quite significantly by the presence of a grain boundary.

back
{"type":"article", "name":"j.zhang20155", "author":"J. Zhang and C. Begau and L. Geng and A. Hartmaier", "title":"Atomistic investigation of wear mechanisms of a copper bicrystal", "journal":"Wear", "volume":"332-333", "OPTnumber":"", "OPTmonth":"5", "year":"2015", "OPTpages":"941-948", "OPTnote":"", "OPTkey":"copper; grain boundary; wear; molecular dynamics", "DOI":"10.1016/j.wear.2015.02.023"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N