Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Theoretical and experimental investigations of the thermoelectric properties of Bi2S3

R. Chmielowski, D. Pere, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. Madsen

Journal of Applied Physics, 117, 125103, (2015)

DOI: 10.1063/1.4916528

Download: BibTEX

Electronic and transport properties of Bi2S3 with various dopants are studied using density functional theory and experimental characterizations. First, principle calculations of thermoelectric properties are used to evaluate the thermoelectric potential of the orthorhombic Bi2S3 structure. The computational screening of extrinsic defects is used to select the most favorable n-type dopants. Among all the dopants considered, hafnium and chlorine are identified as prospective dopants, whereas, e.g., germanium is found to be unfavorable. This is confirmed by experiment. Seebeck coefficient (S) and electrical conductivity (σ) measurements are performed at room temperature on pellets obtained by spark plasma sintering. An increase of power factors (S²·σ) from around 50 up to 500 μW K−2 m−1 is observed for differently doped compounds. In several series of samples, we observed an optimum of power factor above 500 μW K−2 m−1 at room temperature for a chlorine equivalence of 0.25 mol. % BiCl3. The obtained results are plotted on a semilogarithmic log (σ) versus S graph to demonstrate that a very strong linear trend that limits the power factor around 500 μW K−2 m−1 exists. Further improvement of Bi2S3 as thermoelectric material will require finding new doping modes that will break through the observed trend. The results of stability tests demonstrate that properties of optimally doped Bi2S3 are stable.

back
{"type":"article", "name":"r.chmielowski20153", "author":"R. Chmielowski and D. Pere and C. Bera and I. Opahle and W. Xie and S. Jacob and F. Capet and P. Roussel and A. Weidenkaff and G. Madsen", "title":"Theoretical and experimental investigations of the thermoelectric properties of Bi$_2$S$_3$", "journal":"Journal of Applied Physics", "volume":"117", "OPTnumber":"", "OPTmonth":"3", "year":"2015", "OPTpages":"125103", "OPTnote":"", "OPTkey":"", "DOI":"10.1063/1.4916528"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N