Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

High-throughput exploration of alloying as design strategy for thermoelectrics

S. Bhattacharya, G. Madsen

Physical Review B, 92, 085205, (2015)

DOI: 10.1103/PhysRevB.92.085205

Download: BibTEX

We explore a material design strategy to optimize the thermoelectric power factor. The approach is based on screening the band structure changes upon a controlled volume change. The methodology is applied to the binary silicides and germanides. We first confirm the effect in antifluorite Mg2Si and Mg2Ge where an increased power factor by alloying with Mg2Sn is experimentally established. Within a high-throughput formalism we identify six previously unreported binaries that exhibit an improvement in their transport properties with volume. Among these, hexagonal MoSi2 and orthorhombic Ca2Si and Ca2Ge have the highest increment in zT with volume. We then perform supercell calculations on special quasirandom structures to investigate the possibility of obtaining thermodynamically stable alloy systems which would produce the necessary volume changes. We find that for Ca2Si and Ca2Ge the solid solutions with the isostructural Ca2Sn readily forms even at low temperatures.

back
{"type":"article", "name":"s.bhattacharya20158", "author":"S. Bhattacharya and G. Madsen", "title":"Highthroughput exploration of alloying as design strategy for thermoelectrics", "journal":"Physical Review B", "volume":"92", "OPTnumber":"", "OPTmonth":"8", "year":"2015", "OPTpages":"085205", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.92.085205"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N