Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Experimental determination of the nucleation rates of undercooled micron-sized liquid droplets based on fast chip calorimetry

C. Simon, M. Peterlechner, G. Wilde

Thermochimica Acta, 603, 39-45, (2015)

DOI: 10.1016/j.tca.2014.10.027

Download: BibTEX

Accurate thermal analyzes and calorimetry measurements depend on careful calibration measurements. For conventional differential scanning calorimeters (DSC) the calibration procedure is well known. The melting point of different pure metals is measured and compared with literature data to adjust the temperature reading of the calorimeter. Likewise, the measured melting enthalpies of standard reference substances serve for enthalpy calibration. Yet for fast chip calorimetry, new procedures need to be established. For the medium-area and large-area calorimeter chips, this procedure needs to be modified, because the calibration behavior depends on the position of the sample on the measurement area. Additionally, a way to calibrate the calorimeter for measurements performed during cooling will also be shown. For this second aspect, the athermal and diffusionless martensitic phase transformation of Ni49.9–Ti at% was used. The well-calibrated sensor chips are ideally suited to perform nucleation rate density analyzes based on a statistical approach. Here, the nucleation rate densities of micron-sized pure Sn droplets that had been coated with a non-catalytic coating have been determined by experimental analysis of the statistical variance of the undercooling response.

back
{"type":"article", "name":"c.simon20153", "author":"C. Simon and M. Peterlechner and G. Wilde", "title":"Experimental determination of the nucleation rates of undercooled micronsized liquid droplets based on fast chip calorimetry", "journal":"Thermochimica Acta", "volume":"603", "OPTnumber":"", "OPTmonth":"3", "year":"2015", "OPTpages":"39-45", "OPTnote":"", "OPTkey":"", "DOI":"10.1016/j.tca.2014.10.027"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N