Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale

J. Lian, N. Vajragupta, S. Münstermann, W. Bleck, H. Yang

Computational Materials Science, 94, 245–257, (2014)

DOI: 10.1016/j.commatsci.2014.05.051

Download: BibTEX

The aim of this paper is to develop a micromechanical model to quantitatively upscale the damage initiation of dual-phase steels under various stress states from micro to macro and reveal the underlying mechanisms of the damage initiation dependency on stress states from a microstructural level. Finite element (FE) model based on the real microstructure of a DP600 steel sheet is employed by representative volume element (RVE) method. Several numerical aspects are also discussed, such as mesh size and discretisation feature of the phase boundary. The plastic strain localisation theory is applied to the RVE modelling without any other damage models or imperfections. Three typical stress states, uniaxial tension, plane-strain tension and equibiaxial tension, are considered to investigate the influence of the stress state on damage initiation. The quantitative evaluation of the damage initiation for three stress states obtained from the RVE simulation shows the dependency on both stress triaxiality and Lode angle. The results are further compared to the experimentally calibrated damage initiation locus (DIL) and a fairly good agreement is achieved. From this study, the general physical understanding of the effect of stress states on damage initiation is explored and the method for quantitative analysis of the damage initiation in a microstructural level is also established. The microstructure heterogeneity is considered as the key factor that contributes to the damage initiation behaviour of the dual-phase steel.

back
{"type":"article", "name":"j.lian201411", "author":"J. Lian and N. Vajragupta and S. Münstermann and W. Bleck and H. Yang", "title":"A method to quantitatively upscale the damage initiation of dualphase steels under various stress states from microscale to macroscale", "journal":"Computational Materials Science", "volume":"94", "OPTnumber":"", "OPTmonth":"11", "year":"2014", "OPTpages":"245–257", "OPTnote":"", "OPTkey":"", "DOI":"10.1016/j.commatsci.2014.05.051"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N