Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Micromechanical modeling of damage and failure in dual phase steels

J. Lian, N. Vajragupta, S. Münstermann

Key Engineering Materials, 554-557, 2369-2374, (2013)

DOI: 10.4028/www.scientific.net/KEM.554-557.2369

Download: BibTEX

Dual phase (DP) steels consisting of two phases, ferrite and dispersed martensite, offer an attractive combination of strength and stretchability, which is a result of the strong distinctions of these constituents in mechanical properties. However, the damage behavior in DP steels exhibits a rather complex scenario: voids are generated by the debonding of the hard phase from the matrix and the inner cracking of the hard phase in addition to by inclusions. The target of this study is to describe the initiation and evolution of damage in DP steel and develop a microstructure-based model which is capable of reflecting the underlying damage mechanisms. Both uniaxial and biaxial tensile tests are performed and the subsequent metallographic investigations are executed to reveal the mechanisms of damage initiation and evolution under different stress state condition and attention will be paid on the influence of various microstructural features on the initiation of damage. In finite element (FE) simulations, the microstructural features are taken into account by the representative volume elements (RVE). Different treatments of the constitutive behaviour of each constituent including isotropic hardening rule and crystallographically dependent configuration with crystal plasticity finite element method are investigated. Several numerical aspects are also discussed, such as RVE size, mesh size, element type, and boundary connections. In the end, the study is attempting to achieve a quantitative assessment of the cold formability of the investigated steel in a microscopic level based on microstructure information of material as well as to understand the damage mechanisms under different stress states condition which cause the macroscopic failure during plastic deformation.

back
{"type":"article", "name":"j.lian20136", "author":"J. Lian and N. Vajragupta and S. Münstermann", "title":"Micromechanical modeling of damage and failure in dual phase steels", "journal":"Key Engineering Materials", "volume":"554-557", "OPTnumber":"", "OPTmonth":"6", "year":"2013", "OPTpages":"2369-2374", "OPTnote":"", "OPTkey":"crystal plasticity;, dp steel; finite element (FE) simulation; localization; microstructure; representative volume element (RVE)", "DOI":"10.4028/www.scientific.net/KEM.554-557.2369"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N