Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Direction-dependent mechanical characterization of cellulose-based composite vulcanized fiber

R. Scholz, R.-M. Mittendorf, J. Engels, A. Hartmaier, B. Künne, F. Walther

Materials Testing, 58, 813-817, (2016)

DOI: 10.3139/120.110929

Download: BibTEX

Vulcanized fiber is a macromolecular cellulose-based composite material manufactured using the parchmentizing process. The cellulose is produced from the chemical digestion of plant-based raw materials (wood, cotton) or textile waste. Chemical additives used during manufacturing are completely removed. After the process, vulcanized fiber possesses improved properties concerning mechanical strength and abrasion as well as corrosion resistance in comparison to its raw materials. Concerning its economic life cycle assessment, low density, electrical insulating capability and balanced properties, vulcanized fiber has a potential, up to now unused, as a light and renewable structural material for applications in automotive or civil engineering industries. Research activities concerning the mechanical properties are insufficient and existing standards are out-of-date. In this work, for the first time a direction-dependent characterization of the process-related anisotropic mechanical properties of the material is realized with the aim to formulate an adequate material model for numerical simulations in the next step.

back
{"type":"article", "name":"r.scholz201610", "author":"R. Scholz and R.-M. Mittendorf and J. Engels and A. Hartmaier and B. Künne and F. Walther", "title":"Directiondependent mechanical characterization of cellulosebased composite vulcanized fiber", "journal":"Materials Testing", "volume":"58", "OPTnumber":"10", "OPTmonth":"10", "year":"2016", "OPTpages":"813-817", "OPTnote":"", "OPTkey":"", "DOI":"10.3139/120.110929"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N