Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Bond-order potential for molybdenum: Application to dislocation behavior

M. Mrovec, D. Nguyen-Manh, D. Pettifor, V. Vitek

Physical Review B, 69, 094115, (2004)

DOI: 10.1103/PhysRevB.69.094115

Download: BibTEX

The bond-order potential (BOP) for transition metals is a real-space semiempirical description of interactions between the atoms, which is based on the tight-binding approximation and the d-band model. This scheme provides a direct bridge between the electronic level modeling and the atomistic modeling, where the electronic degrees of freedom have been coarse grained into many-body interatomic potentials. In this paper we construct BOP in which both the attractive and the repulsive contributions to the binding energy are environmentally dependent due to both the nonorthogonality of the orbitals and the breathing of the screening charges. The construction of the BOP is described and tested in detail. First, the energies of alternative crystal structures (A15, fcc, hcp, simple cubic) are calculated and compared with those evaluated ab initio. The transferability of the BOP to atomic configurations that deviate significantly from the bcc lattice is studied by computing the energies along tetragonal, trigonal, and hexagonal transformation paths. Next, the phonon spectra are evaluated for several symmetrical crystallographic directions and compared with available experiments. All these calculations highlight the importance of directional bonding and the investigation of phonons demonstrates that the environmental dependence of the bond integrals is crucial for the phonons of the N branch not to be unphysically soft. Finally, the constructed BOP was applied in the modeling of the core structure and glide of the 1/2<111> screw dislocation. The calculated structure of the core agrees excellently with that found in the recent ab initio calculations and the observed glide behavior not only agrees with available ab initio data but is in agreement with many experimental observations and explains the primary reason for the breakdown of the Schmid law in bcc metals.

back
{"type":"article", "name":"m.mrovec20043", "author":"M. Mrovec and D. Nguyen-Manh and D. Pettifor and V. Vitek", "title":"Bondorder potential for molybdenum: Application to dislocation behavior", "journal":"Physical Review B", "volume":"69", "OPTnumber":"9", "OPTmonth":"3", "year":"2004", "OPTpages":"094115", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.69.094115"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N