Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Symmetrical tilt grain boundaries in bcc transition metals: comparison of semiempirical with ab-initio total-energy calculations

T. Ochs, C. Elsässer, M. Mrovec, V. Vitek, J. Belak, J. A. Moriarty

Philosophical Magazine: A-Physics of Condensed Matter Structure Deffects and Mechanical Properties, 80, 2405-2423, (2000)

DOI: 10.1080/01418610008216481

Download: BibTEX

Five different semiempirical total-energy methods, provided in the literature and applicable for atomistic simulations of extended defects in bce transition metals, are investigated in a comparative study. The comparison is made with recent theoretical ab-initio (local-density-functional theory) and experimental (high-resolution transmission electron microscopy) studies for the specific case of the Sigma = 5, (310)[001] symmetrical tilt grain boundaries (Sigma = 5 STGBs) in Nb and Mo. The considered semiempirical real-space approaches based on different approximations of the tight-binding and related methods are the Finnis-Sinclair central-force potentials, non-central-force bond-order potentials recently advanced by Pettifor and co-workers, and non-central-force potentials based on the model-generalized pseudopotential theory of Moriarty. As semiempirical reciprocal-space methods, a very simple d-basis tight-binding model by Paxton and an elaborate environment dependent spd-basis orthogonal tight-binding model by Haas ct al. are included in the analysis. The virtues and deficiencies of these models in their ability to predict the translation states and interfacial energies of the Sigma = 5 STGB are discussed.

back
{"type":"article", "name":"t.ochs200010", "author":"T. Ochs and C. Elsässer and M. Mrovec and V. Vitek and J. Belak and J. A. Moriarty", "title":"Symmetrical tilt grain boundaries in bcc transition metals: comparison of semiempirical with abinitio totalenergy calculations", "journal":"Philosophical Magazine: A-Physics of Condensed Matter Structure Deffects and Mechanical Properties", "volume":"80", "OPTnumber":"10", "OPTmonth":"10", "year":"2000", "OPTpages":"2405-2423", "OPTnote":"", "OPTkey":"", "DOI":"10.1080/01418610008216481"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N