Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Novel ternary sulfide thermoelectric materials from high throughput transport and defect calculations

S. Bhattacharya, R. Chmielowski, G. Dennler, G. Madsen

Journal of Materials Chemistry A, 4, 11086-11093, (2016)

DOI: 10.1039/C6TA04104C

Download: BibTEX

Predicting a novel thermoelectric material requires the simultaneous optimization of several different factors. In this work we use two material design strategies to identify a new n-doped ternary sulfide thermoelectric using a high throughput framework. We have investigated a total of 234 ternary sulfides. Out of these, we identify five candidates that are thermodynamically stable and have bandstructures leading to favourable transport properties. We then predict the likelihood of n-doping, based on a high throughput defect analysis that characterizes the stability of the most favorable compensating intrinsic defects. This proved to be a crucial step which filters only one candidate without any stable electron killer defects. We also explore the possibility of improving the thermoelectric properties with thermal expansion, resulting in carrier pocket alignment. We demonstrate that in CoSbS several positive factors are simultaneously effective, i.e. good thermoelectric properties, correct bandgap, no intrinsic doping limit and an alignment of carrier pockets with volume increase.

back
{"type":"article", "name":"s.bhattacharya20167", "author":"S. Bhattacharya and R. Chmielowski and G. Dennler and G. Madsen", "title":"Novel ternary sulfide thermoelectric materials from high throughput transport and defect calculations", "journal":"Journal of Materials Chemistry A", "volume":"4", "OPTnumber":"", "OPTmonth":"7", "year":"2016", "OPTpages":"11086-11093", "OPTnote":"", "OPTkey":"", "DOI":"10.1039/C6TA04104C"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N