Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Multiphase characterization of Cu-In-Sn alloys with 17 at.% Cu and comparison with calculated phase equilibria

S. Tumminello, N. Del Negro, C. Carrascal, S. Fries, P. R. Alonso, S. Sommadossi

Journal of Phase Equilibria and Diffusion, 38, 276-287, (2017)

DOI: 10.1007/s11669-017-0538-7

Download: BibTEX

Cu-In-Sn alloys are among the suggested materials to replace Pb-Sn alloys traditionally used in joining processes by the electronic industry. Thorough thermodynamic understanding is required for the selection/design of adequate and efficient alloys for specific applications. Understanding the effects that high cost elements such as In have on microstructure and phase stability is imperative for industrial use. In this work ternary alloys were prepared by melting high purity elements (5N) for selected compositions of the 17 at.% Cu isopleth, and cooling down to reproduce process conditions. Chemical composition was determined using scanning electron microscopy equipped with electron probe microanalysis. Measurements of transition temperatures were done by heat-flux differential scanning calorimetry. We present a comprehensive comparison between our experimental results and phase diagram calculations using Liu et al. (J. Electron Mater 30:1093, 2001) thermodynamic description based in the CALPHAD method, available in the literature.

back
{"type":"article", "name":"s.tumminello20176", "author":"S. Tumminello and N. Del Negro and C. Carrascal and S. Fries and P. R. Alonso and S. Sommadossi", "title":"Multiphase characterization of CuInSn alloys with 17 at.\% Cu and comparison with calculated phase equilibria", "journal":"Journal of Phase Equilibria and Diffusion", "volume":"38", "OPTnumber":"3", "OPTmonth":"6", "year":"2017", "OPTpages":"276-287", "OPTnote":"", "OPTkey":"CALPHAD; DSC; lead-free; microstructure; phase stability", "DOI":"10.1007/s11669-017-0538-7"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N