Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys

A. Ferrari, A. Paulsen, J. Frenzel, J. Rogal, G. Eggeler, R. Drautz

Physical Review Materials, 2, 073609, (2018)

DOI: 10.1103/PhysRevMaterials.2.073609

Download: BibTEX

Ti-Ta-X (X = Al, Sn, Zr) compounds are emerging candidates as high-temperature shape memory alloys (HTSMAs). The stability of the one-way shape memory effect (1WE), the exploitable pseudoelastic (PE) strain intervals, as well as the transformation temperature in these alloys depend strongly on composition, resulting in a trade-off between a stable shape memory effect and a high transformation temperature. In this work, experimental measurements and first-principles calculations are combined to rationalize the effect of alloying a third component to Ti-Ta–based HTSMAs. Most notably, an increase in the transformation temperature with increasing Al content is detected experimentally in Ti-Ta-Al for low Ta concentrations, in contrast to the generally observed dependence of the transformation temperature on composition in Ti-Ta-X. This inversion of trend is confirmed by the ab initio calculations. Furthermore, a simple analytical model based on the ab initio data is derived. The model can not only explain the unusual composition dependence of the transformation temperature in Ti-Ta-Al but also provide a fast and elegant tool for a qualitative evaluation of other ternary systems. This is exemplified by predicting the trend of the transformation temperature of Ti-Ta-Sn and Ti-Ta-Zr alloys, yielding a remarkable agreement with available experimental data.

back
{"type":"article", "name":"a.ferrari20187", "author":"A. Ferrari and A. Paulsen and J. Frenzel and J. Rogal and G. Eggeler and R. Drautz", "title":"Unusual composition dependence of transformation temperatures in TiTaX shape memory alloys", "journal":"Physical Review Materials", "volume":"2", "OPTnumber":"7", "OPTmonth":"7", "year":"2018", "OPTpages":"073609", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevMaterials.2.073609"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N