Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Elastic response of cubic crystals to biaxial strain:Analytic results and comparison to density functional theory for InAs

T. Hammerschmidt, P. Kratzer, M. Scheffler

Physical Review B, 75, 235328 , (2007)

DOI: 10.1103/PhysRevB.75.235328

Download: BibTEX

The elastic energy of a biaxially strained material depends on both the magnitude and the plane of the applied biaxial strain, and the elastic properties of the material. We employ continuum-elasticity theory (CET) to determine general analytic expressions for the strain tensor, the Poisson ratio, and the elastic energy for materials with cubic crystal symmetry exposed to biaxial strain in arbitrary planes. In application to thin homogeneously strained films on a substrate, these results enable us to estimate the role of elastic energy for any substrate orientation. When calculating the elastic response to biaxial strain in an arbitrary plane by numerical methods, our analytic results make it possible to set up these calculations in a much more efficient way. This is demonstrated by density-functional theory calculations of the Poisson ratio and elastic energy upon biaxial strain in several planes for the case of InAs. The results are in good agreement with those of CET, but show additional nonlinear contributions already at moderate biaxial strain.

back
{"type":"article", "name":"t.hammerschmidt20071", "author":"T. Hammerschmidt and P. Kratzer and M. Scheffler", "title":"Elastic response of cubic crystals to biaxial strain:Analytic results and comparison to density functional theory for InAs", "journal":"Physical Review B", "volume":"75", "OPTnumber":"", "OPTmonth":"1", "year":"2007", "OPTpages":"235328 ", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.75.235328"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N