Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Numerical analysis of diffusion-controlled internal corrosion by the cellular automata approach

U. Krupp, K. Jahns, K. Balinski, J. Wübbelmann

Defect and Diffusion Forum, 383, 51-58, (2018)

DOI: 10.4028/www.scientific.net/DDF.383.51

Download: BibTEX

The cellular automata method offers a promising approach to describe diffusion and diffusion-controlled precipitation processes at high temperatures. During high temperature exposure, technical components like gas-turbine blades, furnaces, or exhaust systems, are operating in corrosive atmospheres. The resulting material-degradation processes are diffusion‐controlled, and corrosive species penetrate into the material leading to the formation of embrittling precipitates. Cellular automata (CA) represent distributed dynamical systems whose structure is particularly well suited to determine the temporal evolution of the system. In this study, it is shown that the model is able to consider diffusion, nucleation and growth aspects, interdiffusion between scales, and high diffusivity paths like grain boundaries. This has been demonstrated by applying CA to (i) nitrogen diffusion, (ii) internal intergranular oxidation of nickel-based alloy, and (iii) interdiffusion of a binary diffusion couple.

back
{"type":"article", "name":"u.krupp20182", "author":"U. Krupp and K. Jahns and K. Balinski and J. Wübbelmann", "title":"Numerical analysis of diffusioncontrolled internal corrosion by the cellular automata approach", "journal":"Defect and Diffusion Forum", "volume":"383", "OPTnumber":"", "OPTmonth":"2", "year":"2018", "OPTpages":"51-58", "OPTnote":"", "OPTkey":"Cellular automata, diffusion, grain boundary diffusion, interdiffusion, internal oxidation", "DOI":"10.4028/www.scientific.net/DDF.383.51"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N