Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Modelling of grain boundary dynamics using amplitude equations

C. Hüter, J. Neugebauer, G. Boussinot, B. Svendsen, U. Prahl, R. Spatschek

Continuum Mechanics and Thermodynamics, 29, 895-911, (2017)

DOI: 10.1007/s00161-015-0424-7

Download: BibTEX

We discuss the modelling of grain boundary dynamics within an amplitude equations description, which is derived from classical density functional theory or the phase field crystal model. The relation between the conditions for periodicity of the system and coincidence site lattices at grain boundaries is investigated. Within the amplitude equations framework, we recover predictions of the geometrical model by Cahn and Taylor for coupled grain boundary motion, and find both ⟨100⟩ and ⟨110⟩ coupling. No spontaneous transition between these modes occurs due to restrictions related to the rotational invariance of the amplitude equations. Grain rotation due to coupled motion is also in agreement with theoretical predictions. Whereas linear elasticity is correctly captured by the amplitude equations model, open questions remain for the case of nonlinear deformations.

back
{"type":"article", "name":"c.hüter20177", "author":"C. Hüter and J. Neugebauer and G. Boussinot and B. Svendsen and U. Prahl and R. Spatschek", "title":"Modelling of grain boundary dynamics using amplitude equations", "journal":"Continuum Mechanics and Thermodynamics", "volume":"29", "OPTnumber":"4", "OPTmonth":"7", "year":"2017", "OPTpages":"895-911", "OPTnote":"", "OPTkey":"Amplitude equations; grain rotation; coupled motion; nonlinear elasticity", "DOI":"10.1007/s00161-015-0424-7"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N