Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Plastic effects on high cycle fatigue at the edge of contact of turbine blade fixtures

C. Richter, U. Krupp, M. Zeißig

Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, U.S.A, 7A, V07AT31A008, (2017)

DOI: 10.1115/GT2017-63857

Download: BibTEX

Slender turbine blades are susceptible to excitation. Resulting vibrations stress the blade’s fixture to the rotor or stator. In this paper, high cycle fatigue at the edge of contact between blade and rotor/stator of such fixtures is investigated both experimentally and numerically. Plasticity in the contact zone and its effects on e.g. contact tractions, fatigue determinative quantities and fatigue itself are shown to be of considerable relevance. The accuracy of the finite element analysis is demonstrated by comparing the predicted utilizations and slip region widths with data gained from tests. For the evaluation of edge of contact fatigue, tests on simple notched specimens provide the limit data. Predictions on the utilization are made for the edge of contact of a dovetail set-up. Tests with this set-up provide the experimental fatigue limit to be compared to. The comparisons carried out show a good agreement between the experimental results and the plasticity-based calculations of the demonstrated approach.

back
{"type":"inproceedings", "name":"c.richter20176", "author":"C. Richter and U. Krupp and M. Zeißig", "title":"Plastic effects on high cycle fatigue at the edge of contact of turbine blade fixtures", "journal":"Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, U.S.A", "volume":"7A", "OPTnumber":"", "OPTmonth":"6", "year":"2017", "OPTpages":"V07AT31A008", "OPTnote":"", "OPTkey":"", "DOI":"10.1115/GT2017-63857"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N