Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Solute segregation in Cu: DFT vs. experiment

V.I. Razumovskiy, S. Divinski, L. Romaner

Acta Materialia, 147, 122-132, (2018)

DOI: 10.1016/j.actamat.2018.01.011

Download: BibTEX

A close comparison between the segregation data obtained by means of DFT-based calculations and diffusion experiments is provided using the grain boundary (GB) segregation of Ag, Au, Se, Ge, Ni, Co and Bi impurities in Cu as a case study. The density functional theory calculations along with the McLean segregation isotherm are applied to obtain the effective segregation energies of the solute atoms to a representative special GB in Cu. GB diffusion measurements in both B- and C-type kinetic regimes in the same polycrystalline high-purity Cu are used to access the segregation behavior of solutes in the true dilute limit. In the case of Ag and Bi, a very close comparison is possible as the experiments have been conducted on ideal Cu bi-crystals with a GB where we find an excellent agreement between theory and experiment. For the other solutes, the DFT data for the GB are used to mimic behavior of general high-angle interfaces. For Bi, Se, and Ge, the experimental picture is consisted with the DFT results, while for Ni, Co and Au, serious discrepancies are found. The reasons for the discrepancies are analyzed and discussed in the paper. In addition, we investigate the influence of the selected impurities on the mechanical strength of the GB in the framework of the Rice-Thompson-Wang theory and identified the most harmful elements from the point of view of the cohesive destrengthening of the interface.

back
{"type":"article", "name":"v.i.razumovskiy20184", "author":"V.I. Razumovskiy and S. Divinski and L. Romaner", "title":"Solute segregation in Cu: DFT vs. experiment", "journal":"Acta Materialia", "volume":"147", "OPTnumber":"", "OPTmonth":"4", "year":"2018", "OPTpages":"122-132", "OPTnote":"", "OPTkey":"Grain boundary structure; Grain boundary diffusion; grain boundary segregation; ab initio calculations; copper", "DOI":"10.1016/j.actamat.2018.01.011"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N