Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

First-principles-based calculation of the electrocaloric effect in BaTiO3: A comparison of direct and indirect methods

A. Grünebohm, M. Marathe, T. Nishimatsu, P. Entel, C. Ederer

Physical Review B - Condensed Matter and Materials Physics, 93, 054110, (2016)

DOI: 10.1103/PhysRevB.93.054110

Download: BibTEX

We use molecular dynamics simulations for a first-principles-based effective Hamiltonian to calculate two important quantities characterizing the electrocaloric effect in BaTiO3, the adiabatic temperature change ΔT and the isothermal entropy change ΔS, for different electric field strengths. We compare direct and indirect methods to obtain ΔT and ΔS, and we confirm that both methods indeed lead to an identical result provided that the system does not actually undergo a first order phase transition. We also show that a large electrocaloric response is obtained for electric fields beyond the critical field strength for the first order phase transition. Furthermore, our work fills several gaps regarding the application of the first-principles-based effective Hamiltonian approach, which represents a very attractive and powerful method for the quantitative prediction of electrocaloric properties. In particular, we consider the full temperature and field dependence of the calculated specific heat for the indirect calculation of ΔT, and we discuss the importance of maintaining thermal equilibrium during the field ramping when calculating ΔT using the direct method within a molecular dynamics approach.

back
{"type":"article", "name":"a.grünebohm20162", "author":"A. Grünebohm and M. Marathe and T. Nishimatsu and P. Entel and C. Ederer", "title":"Firstprinciplesbased calculation of the electrocaloric effect in BaTiO$_3$: A comparison of direct and indirect methods", "journal":"Physical Review B - Condensed Matter and Materials Physics", "volume":"93", "OPTnumber":"5", "OPTmonth":"2", "year":"2016", "OPTpages":"054110", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.93.054110"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N