Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Influence of microstructural features on the strain hardening behavior of additively manufactured metallic components

A. Biswas, M. R. G. Prasad, N. Vajragupta, H. Hassan, F. Brenne, T. Niendorf, A. Hartmaier, V. Prasad

Advanced Engineering Materials, 21, 1900275, (2019)

DOI: 10.1002/adem.201900275

Download: BibTEX

Additive Manufacturing (AM) has recently become one of the key manufacturing processes in the era of Industry 4.0 because of its highly flexible production scheme. Due to complex thermal cycles during the manufacturing process itself and special solidification conditions, the microstructure of AM components often exhibits elongated grains together with a pronounced texture. These microstructural features significantly contribute to an anisotropic mechanical behavior. In this work, the microstructure and mechanical properties of additively manufactured samples of 316L stainless steel are characterized experimentally and a micromechanical modeling approach is employed to predict the macroscopic properties. The objective of this work is to study the effects of texture and microstructural morphology on yield strength and strain hardening behavior of face-centered cubic additively manufactured metallic components. To incorporate the texture in synthetic Representative Volume Elements (RVE), the proposed approach considers both the crystallographic and grain boundary textures. The mechanical behavior of these RVEs is modeled using crystal plasticity finite element method, which incorporates size effects through the implementation of strain gradients.

back
{"type":"article", "name":"a.biswas20197", "author":"A. Biswas and M. R. G. Prasad and N. Vajragupta and H. Hassan and F. Brenne and T. Niendorf and A. Hartmaier and V. Prasad", "title":"Influence of microstructural features on the strain hardening behavior of additively manufactured metallic components", "journal":"Advanced Engineering Materials", "volume":"21", "OPTnumber":"7", "OPTmonth":"7", "year":"2019", "OPTpages":"1900275", "OPTnote":"", "OPTkey":"additive manufacturing; anisotropy; crystal plasticity; microstructure morphology; texture", "DOI":"10.1002/adem.201900275"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N