Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Efficient calculation of the ECO driving force for atomistic simulations of grain boundary motion

A. Schratt, V. Mohles

Computational Materials Science, 182, 109774, (2020)

DOI: 10.1016/j.commatsci.2020.109774

Download: BibTEX

A new formulation and implementation of the Energy Conserving Orientational (ECO) Driving Force (DF) for Molecular Dynamics (MD) simulations of grain boundary (GB) motion has been developed. While the original ECO-DF slows down MD simulations of GB motion by more than an order of magnitude, the new version is almost as efficient as the widely used Janssens DF (J-DF). In order to rate the new method in comparison to others, the velocity of a symmetric Σ5 〈001〉 36.87° tilt GB in nickel has been simulated using the new ECO-DF and the J-DF. The deviations are discussed, including the impacts on the AIRwalk method to evaluate the GB mobility. The temperature T, the DF magnitude p, and the boundary conditions were varied. Under fully periodic boundaries, all results consistently yield a GB velocity v(p, T) that is based on two subsequent or co-dependent mechanisms, shuffling and its initiation, just like for a symmetric Σ7 〈111〉 38.2° tilt GB investigated previously with the original ECO-DF. Under the so-called shrink-wrapped boundary conditions, a relative grain displace- ment occurs. The magnitude of this coupling effect strongly depends on temperature. From the comparison of simulations under different boundary conditions it appears probable that the initiation process under periodic boundary conditions is actually the initiation of GB sliding, which needs to undo fully coupled grain motion. The shuffling mechanism is the combined GB motion fully coupled with grain displacement.

back
{"type":"article", "name":"a.schratt20209", "author":"A. Schratt and V. Mohles", "title":"Efficient calculation of the ECO driving force for atomistic simulations of grain boundary motion", "journal":"Computational Materials Science", "volume":"182", "OPTnumber":"", "OPTmonth":"9", "year":"2020", "OPTpages":"109774", "OPTnote":"", "OPTkey":"molecular dynamics; synthetic driving force; grain boundary mobility; coupling effect", "DOI":"10.1016/j.commatsci.2020.109774"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N