Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Inverse modeling of cancellous bone using artificial neural networks

V. Stieve, M. Blaszczyk, K. Hackl

ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 102, 202100541, (2022)

DOI: 10.1002/zamm.202100541

Download: BibTEX

Artificial neural networks are used to solve different tasks of daily life, engineering and medicine. In this work, we investigate its suitability for the examination of simulation results of cancellous bone with the aim to evaluate whether the bone is affected by osteoporosis. This bone disease is characterized by a reduction of the cortical bone phase, one of the two main components of the bone. The neural network predicts the simulated volume fraction in different parts of a cylinder, which models the bone. As a basis for its calculations, the neural network gets the information about the magnetic field inside the cylinder from finite element simulations. Examinations show that it is possible to train neural networks on solving that task with very high accuracies.

back
{"type":"article", "name":"v.stieve20226", "author":"V. Stieve and M. Blaszczyk and K. Hackl", "title":"Inverse modeling of cancellous bone using artificial neural networks", "journal":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik", "volume":"102", "OPTnumber":"6", "OPTmonth":"6", "year":"2022", "OPTpages":"202100541", "OPTnote":"", "OPTkey":"", "DOI":"10.1002/zamm.202100541"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N