Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Molecular dynamics simulation of confined glass forming liquids

F. Varnik, P. Scheidler, J. Baschnagel, W. Kob, K. Binder

Materials Research Society Symposium Proceedings, 651, T3.1.1-T3.1.6, (2001)

Download: BibTEX

Two model studies are presented in order to elucidate the effect of confinement on glass forming fluids, attempting to study the effects of the interactions between the confining walls and the fluid particles. In the first model, short bead-spring chains (modelling a melt of flexible polymers) are put in between perfectly flat, structureless walls, on which repulsive potentials act. It is shown that chains near the walls move faster (in the direction parallel to the walls) than chains in the bulk. A significant decrease of the (mode-coupling) critical temperature with decreasing film thickness is found. In the second model, a binary Lennard-Jones liquid is confined in a thin film, whose surface has an amorphous structure similar to the liquid. Although, as expected, the static structural properties of the liquid are not affected by the confinement, relaxation times near the wall are much larger than in the bulk. Consequences for the interpretation of experiments are briefly discussed.

back
{"type":"inproceedings", "name":"f.varnik20011", "author":"F. Varnik and P. Scheidler and J. Baschnagel and W. Kob and K. Binder", "title":"Molecular dynamics simulation of confined glass forming liquids", "journal":"Materials Research Society Symposium Proceedings", "volume":"651", "OPTnumber":"", "OPTmonth":"1", "year":"2001", "OPTpages":"T3.1.1-T3.1.6", "OPTnote":"", "OPTkey":"glass transition; Lennard-Jones potential; liquid films; liquid structure; molecular dynamics method; polymer films; polymer melts", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N