Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Toward quantum-dot cellular automata units: thiolated-carbazole linked bisferrocenes

V. Arima, M. Iurlo, L. Zoli, S. Kumar, M. Piacenza, F. Della Sala, F. Matino, G. Maruccio, R. Rinaldi, F. Paolucci, M. Marcaccio, P.G. Cozzi, A.P. Bramanti

Nanoscale, 4, 813-823, (2012)

DOI: 10.1039/c1nr10988j

Download: BibTEX

Quantum-dot Cellular Automata (QCA) exploit quantum confinement, tunneling and electrostatic interaction for transistorless digital computing. Implementation at the molecular scale requires carefully tailored units which must obey several structural and functional constraints, ranging from the capability to confine charge efficiently on different ‘quantum-dot centers’—in order to sharply encode the Boolean states—up to the possibility of having their state blanked out upon application of an external signal. In addition, the molecular units must preserve their geometry in the solid state, to interact electrostatically in a controlled way. Here, we present a novel class of organometallic molecules, 6-3,6-bis(1-ethylferrocen)-9H-carbazol-9-yl-6-hexan-1-thiols, which are engineered to satisfy all such crucial requirements at once, as confirmed by electrochemistry and scanning tunneling microscopy measurements, and first principles density functional calculations.

back
{"type":"article", "name":"v.arima20122", "author":"V. Arima and M. Iurlo and L. Zoli and S. Kumar and M. Piacenza and F. Della Sala and F. Matino and G. Maruccio and R. Rinaldi and F. Paolucci and M. Marcaccio and P.G. Cozzi and A.P. Bramanti", "title":"Toward quantumdot cellular automata units: thiolatedcarbazole linked bisferrocenes", "journal":"Nanoscale", "volume":"4", "OPTnumber":"3", "OPTmonth":"2", "year":"2012", "OPTpages":"813-823", "OPTnote":"", "OPTkey":"", "DOI":"10.1039/c1nr10988j"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N