Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Atomistic investigation of scratching-induced deformation twinning in nanocrystalline Cu

J. Zhang, T. Sun, Y.D. Yan, S. Dong, X.D. Li

Journal of Applied Physics, 112, 073526, (2012)

DOI: 10.1063/1.4757937

Download: BibTEX

Deformation twinning is an important deformation mode of nanocrystalline metals. In current study, we investigate the scratching-induced deformation twinning in nanocrystalline Cu by means of molecular dynamics simulations. The tribological behavior, the deformation mechanisms, the formation mechanism of deformation twins, and the grain size dependence of the propensity of deformation twinning are elucidated. Simulation results demonstrate that deformation twinning plays an important role in the plastic deformation of nanocrystalline Cu under nanoscratching, in addition to dislocation activity and grain boundary-associated mechanism. The nucleation of initial twinning partial dislocations originates from the dissociation of lattice partial dislocations that emit from grain boundary triple junctions, and subsequent twin boundary migration is resulted from the glide of lattice partial dislocations emitted from twin boundary-grain boundary intersections on the twin plane. It is found that the propensity of deformation twinning in nanocrystalline Cu under scratching has strong dependence on both grain size and stress state. These findings will advance our understanding of the tribological behavior of nanocrystalline Cu and provide design and fabrication guidelines for nanocrystalline Cu based micro/nanosystems.

back
{"type":"article", "name":"j.zhang201210", "author":"J. Zhang and T. Sun and Y.D. Yan and S. Dong and X.D. Li", "title":"Atomistic investigation of scratchinginduced deformation twinning in nanocrystalline Cu", "journal":"Journal of Applied Physics", "volume":"112", "OPTnumber":"7", "OPTmonth":"10", "year":"2012", "OPTpages":"073526", "OPTnote":"", "OPTkey":"", "DOI":"10.1063/1.4757937"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N