Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Scaling relations for crack-tip plasticity

A. Hartmaier, P. Gumbsch

Philosophical Magazine, A 82, 3187-3200, (2000)

DOI: 10.1080/0141861021000018160

Download: BibTEX

The fracture toughness of semibrittle materials such as bee transition metals or semiconductor crystals strongly depends on loading rate and temperature. If crack-tip plasticity is considered to be thermally activated, a strong correlation between these quantities is expected. An Arrhenius-like scaling relation between the loading rate and the brittle-to-ductile transition temperature has already been reported. In the present work, two-dimensional discrete dislocation dynamics simulations of crack-tip plasticity are employed to show that the different combinations of loading rates and temperatures which yield the same fracture toughness are indeed correlated by a scaling relation. This scaling relation is closely related to the law used to describe dislocation motion. A strong correlation between loading rate and temperature is found in the entire temperature regime in which crack-tip plasticity is controlled by dislocation mobility. This shows the importance of dislocation mobility for fracture toughness below the brittle-to-ductile transition and for the transition itself. The findings of our simulations are consistent with experimental data gathered on tungsten single crystals and suggest that non-screw dislocations are dominating crack-tip plasticity in the semibrittle regime of this material.

back
{"type":"article", "name":"a.hartmaier20001", "author":"A. Hartmaier and P. Gumbsch", "title":"Scaling relations for cracktip plasticity", "journal":"Philosophical Magazine", "volume":"A 82", "OPTnumber":"17-18 ", "OPTmonth":"1", "year":"2000", "OPTpages":"3187-3200", "OPTnote":"", "OPTkey":"TUNGSTEN SINGLE-CRYSTALS; TO-DUCTILE TRANSITION; DISLOCATION ACTIVITY; FLOW-STRESS; CLEAVAGE ", "DOI":"10.1080/0141861021000018160"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N