Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Suppression of Ni4Ti3 precipitation by grain size refinement in Ni-rich NiTi shape memory alloys

E. A. Prokofiev, J. A. Burow, E. J. Payton, R. Zarnetta, J. Frenzel, D. V. Gunderov, R. Z. Valiev, G. Eggeler

Advanced Engineering Materials, 12, 747-753, (2010)

DOI: 10.1002/adem.201000101

Download: BibTEX

Severe plastic deformation (SPD) processes, such as equal channel angular pressing (ECAP) and high pressure torsion (HPT), are successfully employed to produce ultra fine grain (UFG) and nanocrystalline (NC) microstructures in a Ti–50.7 at% Ni shape memory alloy. The effect of grain size on subsequent Ni-rich particle precipitation during annealing is investigated by transmission electron microscopy (TEM), selected area electron diffraction (SAD, SAED), and X-ray diffraction (XRD). It is observed that Ni4Ti3 precipitation is suppressed in grains of cross-sectional equivalent diameter below approximately 150 nm, and that particle coarsening is inhibited by very fine grain sizes. The results suggest that fine grain sizes impede precipitation processes by disrupting the formation of self-accommodating particle arrays and that the arrays locally compensate for coherency strains during nucleation and growth.

back
{"type":"article", "name":"e.a.prokofiev20108", "author":"E. A. Prokofiev and J. A. Burow and E. J. Payton and R. Zarnetta and J. Frenzel and D. V. Gunderov and R. Z. Valiev and G. Eggeler", "title":"Suppression of Ni$_4$Ti$_3$ precipitation by grain size refinement in Nirich NiTi shape memory alloys", "journal":"Advanced Engineering Materials", "volume":"12", "OPTnumber":"8", "OPTmonth":"8", "year":"2010", "OPTpages":"747-753", "OPTnote":"", "OPTkey":"", "DOI":"10.1002/adem.201000101"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N