Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Inverse ripening and rearrangement of precipitates under chemomechanical coupling

R. Darvishi Kamachali, C. Schwarze

Computational Materials Science, 130, 292-296, (2017)

DOI: 10.1016/j.commatsci.2017.01.024

Download: BibTEX

A coupling between diffusional and mechanical relaxation raised from composition-dependent elastic constants, and its effects on the evolution of precipitates with finite misfit strain are investigated. Inverse ripening has been observed where smaller precipitate grows at the expense of a larger one. This occurs due to fluxes generated under elastically-strained solute gradients around precipitates that scales with (R/r)^6 where R and r are the precipitate radius and the radial coordinate, respectively. Both isotropic and anisotropic dependency of elastic constants on the composition were considered. The latter leads to the emergence of new patterns of elastic anisotropy and rearrangement of precipitates in the matrix.

back
{"type":"article", "name":"r.darvishikamachali20174", "author":"R. Darvishi Kamachali and C. Schwarze", "title":"Inverse ripening and rearrangement of precipitates under chemomechanical coupling", "journal":"Computational Materials Science", "volume":"130", "OPTnumber":"", "OPTmonth":"4", "year":"2017", "OPTpages":"292-296", "OPTnote":"", "OPTkey":"chemomechanical coupling; phase transformation; precipitation; ripening; elasticity", "DOI":"10.1016/j.commatsci.2017.01.024"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N