Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Magnetically controlled microstructure evolution in non-ferromagnetic metals

D. A. Molodov, P. J. Konijnenberg, L. A. Barrales-Mora, V. Mohles

Journal of Materials Science, 41, 7853–7861, (2006)

DOI: 10.1007/s10853-006-0422-z

Download: BibTEX

The microstructure evolution during grain growth in magnetically anisotropic materials can be affected by a magnetic field due to an additional driving force for grain boundary motion which arises from a difference in magnetic free energy density between differently oriented grains. Therefore each grain of a polycrystal, exposed to a magnetic field, is inclined to grow or to shrink by a magnetic force depending on the orientation of the respective grain and its surrounding neighbors with regard to the field direction. A theoretical analysis of the grain growth kinetics in the presence of an external magnetic field reveals that magnetically affected grain growth may result in an orientation distribution that favours grains with a lower magnetic free energy density. As it is experimentally demonstrated on polycrystalline zinc, titanium and zirconium, the crystallographic texture in magnetically anisotropic non-magnetic materials can be effectively changed and controlled by means of annealing in a magnetic field. EBSD-analysis revealed that the observed asymmetrical texture after magnetic annealing is due to a large extent to a significant difference in the number of grains that make up different texture components. The results of computer simulations of magnetically affected grain growth in 2-D polycrystals are in a good agreement with theoretical predictions and experimental findings.

back
{"type":"article", "name":"d.a.molodov200612", "author":"D. A. Molodov and P. J. Konijnenberg and L. A. Barrales-Mora and V. Mohles", "title":"Magnetically controlled microstructure evolution in nonferromagnetic metals", "journal":"Journal of Materials Science", "volume":"41", "OPTnumber":"23", "OPTmonth":"12", "year":"2006", "OPTpages":"7853–7861", "OPTnote":"", "OPTkey":"", "DOI":"10.1007/s10853-006-0422-z"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N