Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Characterization and statistical modeling of the precipitation kinetics in the commercial aluminum alloy AA5182

Z. Liu, V. Mohles, O. Engler, G. Gottstein

MRS Online Proceeding Library Archive, 1369, -, (2011)

DOI: 10.1557/opl.2011.1514

Download: BibTEX

Precipitation kinetics in the wrought alloy AA5182 during homogenization was investigated by various experimental methods. The constituents generated during casting were identified with energy dispersive X-ray spectroscopy (EDS) analysis. Their volume fraction was measured with optical microscopy. The size evolution of dispersoids during the heat treatment was studied in TEM. The EDS analysis shows that the dispersoids were mainly Al6Mn and α-Al(MnFe)Si. The dispersoids number was counted from a large number of electron back scatter images to yield good statistics. Electrical resistivity measurements were performed to study precipitation indirectly via the solute content. With the above experimental information, the thermodynamics based precipitation model ClaNG was calibrated for the alloy AA5182. Unknown parameters like interface energies of precipitates were adjusted accordingly. ClaNG is capable of describing the simultaneous nucleation, growth and coarsening of all important precipitates in multi-component systems for arbitrary heat treatments. After the unknown parameters were determined, the model was able to predict the volume and size distribution of dispersoids and the matrix composition for varied heat treatments. The predictions were used to design and optimize the heating process with respect to the microstructure of the homogenized ingot.

back
{"type":"inproceedings", "name":"z.liu201110", "author":"Z. Liu and V. Mohles and O. Engler and G. Gottstein", "title":"Characterization and statistical modeling of the precipitation kinetics in the commercial aluminum alloy AA5182", "journal":"MRS Online Proceeding Library Archive", "volume":"1369", "OPTnumber":"", "OPTmonth":"10", "year":"2011", "OPTpages":"-", "OPTnote":"", "OPTkey":"phase transformation; nucleation growth; simulation", "DOI":"10.1557/opl.2011.1514"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N