Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems

J. Kundin, M. A. Choudhary

Physical Review E, 94, 012801, (2016)

DOI: 10.1103/PhysRevE.94.012801

Download: BibTEX

The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial energy (rs). The comparison of the results based on both radii shows that the difference re−rs is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius rs, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

back
{"type":"article", "name":"j.kundin20167", "author":"J. Kundin and M. A. Choudhary", "title":"Numerical determination of the interfacial energy and nucleation barrier of curved solidliquid interfaces in binary systems", "journal":"Physical Review E", "volume":"94", "OPTnumber":"1", "OPTmonth":"7", "year":"2016", "OPTpages":"012801", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevE.94.012801"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N