Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Bridging the phase-field and phase-field crystal approaches for anisotropic material systems

J. Kundin, M. A. Choudhary, H. Emmerich

The European Physical Journal Special Topics, 223, 363–372, (2014)

DOI: 10.1140/epjst/e2014-02096-y

Download: BibTEX

In this paper the amplitude representation of the anisotropic phase-field crystal (APFC) model recently proposed as a generalized model for isotropic as well as anisotropic crystal lattice systems is developed. The relationship between the amplitude equations and the standard phase-field model for solidification of pure substances with elasticity effects is derived which provide an explicit connection between the phase-field and APFC models. On the one hand we present a computationally more efficient model and highlight its potential as a bridge between the PFC and phase-field models with anisotropic interface energies and kinetics on the other hand.

back
{"type":"article", "name":"j.kundin20142", "author":"J. Kundin and M. A. Choudhary and H. Emmerich", "title":"Bridging the phasefield and phasefield crystal approaches for anisotropic material systems", "journal":"The European Physical Journal Special Topics", "volume":"223", "OPTnumber":"3", "OPTmonth":"2", "year":"2014", "OPTpages":"363–372", "OPTnote":"", "OPTkey":"", "DOI":"10.1140/epjst/e2014-02096-y"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N