Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Numerical study of the liquid-solid interface properties for binary alloys using phase-field crystal approach

M. A. Choudhary, J. Kundin, H. Emmerich

MRS Online Proceeding Library Archive, 1535, -, (2013)

DOI: 10.1557/opl.2013.462

Download: BibTEX

The phase-field crystal (PFC) method has emerged as a promising technique to simulate the evolution of crystalline patterns with atomistic resolution on mesoscopic time scales. We use a 2D PFC model based on Elder et al. [Phy. Rev. B 75, 064107 (2007)] to perform a systematic analysis of a liquid-solid interface for a binary alloy system. We propose the method of determining interfacial energies for a curved liquid-solid interface by stabilizing the circular solid seed in the surrounding liquid phase and the liquid droplet in the solid phase for various seed sizes in a finite system. We also investigate the impact of model parameters on the resulting interface energies. The interface energies are computed with various system sizes in order to study the system size effects. In particular, we compare the simulation results in the form of the interface energy as a function of radius with the existing theories.

back
{"type":"inproceedings", "name":"m.a.choudhary20131", "author":"M. A. Choudhary and J. Kundin and H. Emmerich", "title":"Numerical study of the liquidsolid interface properties for binary alloys using phasefield crystal approach", "journal":"MRS Online Proceeding Library Archive", "volume":"1535", "OPTnumber":"", "OPTmonth":"1", "year":"2013", "OPTpages":"-", "OPTnote":"", "OPTkey":"", "DOI":"10.1557/opl.2013.462"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N