Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Thermodynamic consistency and fast dynamics in phase-field crystal modeling

M. Cheng, J. Kundin, D. Li, H. Emmerich

Philosophical Magazine Letters, 92, 517-526, (2012)

DOI: 10.1080/09500839.2012.691215

Download: BibTEX

A general formulation is presented to derive the equation of motion and demonstrate thermodynamic consistency for several classes of phase-field (PF) and PF crystal (PFC) models. It can be applied to models with a conserved and non-conserved phase-field variable, describing either locally uniform or periodic stable states, and containing slow as well as fast thermodynamic variables. The approach is based on an entropy functional formalism previously developed in the context of PF models for locally uniform states [P. Galenko and D. Jou, Phys. Rev. E 71 (2005) p.046125] and thus allows to extend several properties of the latter to PF models for periodic states, i.e., PFC models.

back
{"type":"article", "name":"m.cheng20125", "author":"M. Cheng and J. Kundin and D. Li and H. Emmerich", "title":"Thermodynamic consistency and fast dynamics in phasefield crystal modeling", "journal":"Philosophical Magazine Letters", "volume":"92", "OPTnumber":"10", "OPTmonth":"5", "year":"2012", "OPTpages":"517-526", "OPTnote":"", "OPTkey":"phase-field crystal model; thermodynamic consistency; computed simulation; crystal growth; phase equilibria", "DOI":"10.1080/09500839.2012.691215"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N