Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Phase-field modeling of eutectic Ti–Fe alloy solidification

J. Kundin, R. Kumar, A. Schlieter, M. A. Choudhary, T. Gemming, U. Kuehn, J. Eckert, H. Emmerich

Computational Materials Science, 63, 319–328, (2012)

DOI: 10.1016/j.commatsci.2012.06.033

Download: BibTEX

The eutectic microstructure formed during the solidification of a binary titanium–iron alloy (Ti–29.5 at.% Fe) has been simulated using the phase-field method. The model uses the chemical free energy contributions of phases with different thermodynamic factors. It is demonstrated that the simulated microstructure exhibits phenomena which are also observed during eutectic solidification in experiments. The obtained microstructure consist of a combination of circular and lamellar phase structures. The growth behavior and growth morphology of the phases are found to be a strong function of the front undercooling and the temperature gradient in the system. The simulated dependency of the steady state lamellar width versus the front undercooling corresponds to the theoretical prediction following from the “Jackson–Hunt” model. It is also shown that the relation between the mobilities of the phases strongly affects the eutectic microstructure.

back
{"type":"article", "name":"j.kundin201210", "author":"J. Kundin and R. Kumar and A. Schlieter and M. A. Choudhary and T. Gemming and U. Kuehn and J. Eckert and H. Emmerich", "title":"Phasefield modeling of eutectic Ti–Fe alloy solidification", "journal":"Computational Materials Science", "volume":"63", "OPTnumber":"", "OPTmonth":"10", "year":"2012", "OPTpages":"319–328", "OPTnote":"", "OPTkey":"phase-field modeling; solidification; Ti–Fe alloy", "DOI":"10.1016/j.commatsci.2012.06.033"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N