Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Mathematical concepts for the micro-mechanical modeling of dislocation dynamics with a phase-field approach

J. Kundin, H. Emmerich, J. Zimmer

Philosophical Magazine, 91, 97-121, (2011)

DOI: 10.1080/14786435.2010.485587

Download: BibTEX

This contribution reviews the mathematical concepts of micromechanical modelling in the phase-field approach applied to dislocation dynamics. The intention is two-fold. On the one hand, modelling of dislocation dynamics is a very recent field of development in phase-field theory, in comparison to the simulation of diffusional phase transformation and related microstructure evolution problems in materials science. The reason is that modelling dislocation dynamics poses several challenges for phase-field concepts which go beyond purely diffusional problems in materials science such as, e.g. dendritic solidification, as we point out in Section 3. On the other hand, the modelling of dislocations has triggered further wide-ranging developments of phase-field based models for deformation problems. This is an important development, since a comprehensive model for deformation problems should include displacive as well as diffusional degrees of freedom from the atomic scale to the microscale. This is something phase-field theory is capable of, as discussed in this review article. We aim to give an overview of relevant mathematical concepts, and to stimulate further steps in this direction.

back
{"type":"article", "name":"j.kundin20111", "author":"J. Kundin and H. Emmerich and J. Zimmer", "title":"Mathematical concepts for the micromechanical modeling of dislocation dynamics with a phasefield approach", "journal":"Philosophical Magazine", "volume":"91", "OPTnumber":"1", "OPTmonth":"1", "year":"2011", "OPTpages":"97-121", "OPTnote":"", "OPTkey":"phase-field approach; modelling; dislocation dynamics; micromechanics", "DOI":"10.1080/14786435.2010.485587"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N