Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Ab initio modeling of glass corrosion: Hydroxylation and chemisorption of oxalic acid at diopside and akermanite surfaces

C.-J. Yu, J. Kundin, S. Cottenier , H. Emmerich

Acta Materialia, 57, 5303–5313, (2009)

DOI: 10.1016/j.actamat.2009.07.023

Download: BibTEX

Using ab initio density functional theory, we have performed a systematic study of corrosion processes at pure and at hydroxylated surfaces of the silicate minerals diopside (CaMgSi2O6)(CaMgSi2O6) and akermanite (Ca2MgSi2O7)(Ca2MgSi2O7), serving as model systems for multicomponent glasses. The tendency of the cations to assume their ideal bulk coordination was identified as the driving force behind spontaneous surface relaxation and hydroxylation in an aqueous environment. Surface complexes formed after exposing the glass surfaces to oxalic acid form a protective hydrophobic layer on the surface and thus prevent the leaching of metal cations from the glass surface. This provides a description of the mechanism of glass corrosion inhibition at the atomic level: as the chemisorption energy of oxalic acid is larger than the physisorption energy of water, the former is the process that will actually occur.

back
{"type":"article", "name":"c.-j.yu200910", "author":"C.-J. Yu and J. Kundin and S. Cottenier and H. Emmerich", "title":"Ab initio modeling of glass corrosion: Hydroxylation and chemisorption of oxalic acid at diopside and akermanite surfaces", "journal":"Acta Materialia", "volume":"57", "OPTnumber":"18", "OPTmonth":"10", "year":"2009", "OPTpages":"5303–5313", "OPTnote":"", "OPTkey":"non-metallic glasses (silicates); corrosion; surface structure; density functional theory; glass corrosion", "DOI":"10.1016/j.actamat.2009.07.023"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N